Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607443

RESUMO

Protocatechuic acid (PCA) is a water-soluble polyphenol compound that is extracted from certain fruits and plants or obtained from glucose fermentation. Several in vivo and in vitro studies have determined that PCA has protective effects against the toxicity of natural and chemical toxicants. We searched these articles in PubMed, Google Scholar, and Scopus with appropriate keywords from inception up to August 2023. Forty-nine studies were found about protective effects of PCA against drug toxicity, metal toxicity, toxins, chemical toxicants, and some other miscellaneous toxicants. PCA indicates these protective effects by suppression of oxidative stress, inflammation, and apoptosis. PCA reduces reactive oxygen/nitrogen species (RONS) and enhances the level of antioxidant parameters mainly through the activation of the Nrf-2 signaling pathway. PCA also decreases the levels of inflammatory mediators via downregulating the TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. In addition, PCA inhibits apoptosis by lowering the expression of Bax, caspase-3, and caspase-9 along with enhancing the level of the antiapoptotic protein Bcl-2. Further evaluation, especially in humans, is necessary to confirm PCA as a potential therapeutic approach to intervene in such toxicities.

2.
Toxicon ; 243: 107715, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636613

RESUMO

OBJECTIVES: Contamination of surface waters is a major health threat for all living creatures. Some types of blue-green algae that naturally occur in fresh water, are able to produce various toxins, like Microcystins (MCs). Microcystin-leucine arginine (MC-LR) produced by Microcystis aeruginosa is the most toxic and abundant isoforms of MCs, and it causes hepatotoxicity. The present article reviews preclinical experiments examined different treatments, including herbal derivatives, dietary supplements and drugs against MC-LR hepatotoxicity. METHODS: We searched scientific databases Web of Science, Embase, Medline (PubMed), Scopus, and Google Scholar using relevant keywords to find suitable studies until November 2023. RESULTS: MC-LR through Organic anion transporting polypeptide superfamily transporters (OATPs) penetrates and accumulates in hepatocytes, and it inhibits protein phosphatases (PP1 and PP2A). Consequently, MC-LR disturbs many signaling pathways and induces oxidative stress thus damages cellular macromolecules. Some protective agents, especially plants rich in flavonoids, and natural supplements, as well as chemoprotectants were shown to diminish MC-LR hepatotoxicity. CONCLUSION: The reviewed agents through blocking the OATP transporters (nontoxic nostocyclopeptide-M1, captopril, and naringin), then inhibition of MC-LR uptake (naringin, rifampin, cyclosporin-A, silymarin and captopril), and finally at restoration of PPAse activity (silybin, quercetin, morin, naringin, rifampin, captopril, azo dyes) exert hepatoprotective effect against MC-LR.

3.
J Biochem Mol Toxicol ; 38(1): e23635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229313

RESUMO

Arsenic is a toxic metalloid found in the environment in different organic and inorganic forms. Molecular mechanisms implicated in arsenic hepatotoxicity are complex but include oxidative stress, apoptosis, and autophagy. The current study focused on the potential protective capacity of melatonin against arsenic-induced hepatotoxicity. Thirty-six male Wistar rats were allocated into control, arsenic (15 mg/kg; orally), arsenic (15 mg/kg) plus melatonin (10, 20, and 30 mg/kg; intraperitoneally), and melatonin alone (30 mg/kg) groups for 28 days. After the treatment period, the serum sample was separated to measure liver enzymes (AST and ALT). The liver tissue was removed and then histological alterations, oxidative stress markers, antioxidant capacity, the levels of Nrf2 and HO-1, apoptosis (Bcl-2, survivin, Mcl1, Bax, and caspase-3), and autophagy (Sirt1, Beclin-1, and LC3 II/I ratio) proteins, as well as the expression level of miR-34a, were evaluated on this tissue. Arsenic exposure resulted in the enhancement of serum AST, ALT, and substantial histological damage in the liver. Increased levels of malondialdehyde, a lipid peroxidation marker, and decreased levels of physiological antioxidants including glutathione, superoxide dismutase, and catalase were indicators of arsenic-induced oxidative damage. The levels of Nrf2, HO-1, and antiapoptotic proteins diminished, while proapoptotic and autophagy proteins were elevated in the arsenic group concomitant with a low level of hepatic miR-34a. The co-treatment of melatonin and arsenic reversed the changes caused by arsenic. These findings showed that melatonin reduced the hepatic damage induced by arsenic due to its antioxidant and antiapoptotic properties as well as its regulatory effect on the miR-34a/Sirt1/autophagy pathway.


Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Melatonina , MicroRNAs , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Arsênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Ratos Wistar , Fígado/metabolismo , Estresse Oxidativo , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Autofagia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38275046

RESUMO

BACKGROUND AND OBJECTIVE: Snakebite envenoming is a serious public health issue causing more than 135,000 annual deaths worldwide. Naja naja oxiana is one of the most clinically important venomous snakes in Iran and Central Asia. Conventional animal-derived polyclonal antibodies are the major treatment of snakebite envenoming. Characterization of venom components helps to pinpoint the toxic protein responsible for clinical manifestations in victims, which aids us in developing efficient antivenoms with minimal side effects. Therefore, the present study aimed to identify the major lethal protein of Naja naja oxiana by top-down proteomics. METHODS: Venom proteomic profiling was performed using gel filtration (GF), reversed-phase (RP) chromatography, and intact mass spectrometry. The toxicity of GF-, and RP-eluted fractions was analyzed in BALB/c mice. The rabbit polyclonal antisera were produced against crude venom, GF fraction V (FV), and RP peak 1 (CTXP) and applied in neutralization assays. RESULTS: Toxicity studies in BALB/c identified FV as the major toxic fraction of venom. Subsequently, RP separation of FV resulted in eight peaks, of which peak 1, referred to as "CTXP" (cobra toxin peptide), was identified as the major lethal protein. In vivo neutralization assays using rabbit antisera showed that polyclonal antibodies raised against FV and CTXP are capable of neutralizing at least 2-LD50s of crude venom, FV, and CTXP in all tested mice. CONCLUSION: Surprisingly, the Anti-CTXP antibody could neutralize 8-LD50 of the CTXP peptide. These results identified CTXP (a 7 kDa peptide) as a potential target for the development of novel efficient antivenom agents.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38180557

RESUMO

Remdesivir (RDV) is the mainstay antiviral therapy for moderate to severe COVID-19. Although remdesivir was the first drug approved for COVID-19, information about its efficacy and safety profile is limited in a significant segment of the population, such as people with underlying diseases, the elderly, children, and pregnant and lactating women. The efficacy and safety profile of RDV in disease progression, renal impairment, liver impairment, immunosuppression, geriatrics, pediatrics, pregnancy, and breastfeeding in COVID-19 patients was evaluated. The databases searched included Embase, Scopus, and PubMed. Only English language studies enrolling specific subpopulations with COVID-19 and treated with RDV were included. Thirty-nine clinical trials, cohorts, cross-sectional studies, and case series/reports were included. Most supported the benefits of RDV therapy for COVID-19 patients, such as lessening the duration of hospitalization, alleviating respiratory complications, and reducing mortality. Adverse effects of RDV, including liver and kidney impairment, were, for the most part, moderate to mild, supporting the safety profile of RDV therapy. RDV therapy was well tolerated, no new safety signals were detected, and liver function test abnormalities were the most common adverse events. Moreover, RDV, for the most part, was effective in managing the complications of COVID-19 and reducing mortality in these patients, except for patients with kidney impairment. Future studies, including RCTs, should include these subpopulations of patients to avoid delays associated with receiving proper medication through compassionate use programs.

7.
Int J Environ Health Res ; 34(1): 611-624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36682065

RESUMO

Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.


Assuntos
Fator 2 Relacionado a NF-E2 , Paraquat , Humanos , Paraquat/toxicidade , Paraquat/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Elementos de Resposta Antioxidante , Pulmão , Estresse Oxidativo , Transdução de Sinais
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 1971-1984, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37812241

RESUMO

Doxorubicin is a potent chemotherapeutic agent that can cause cardiotoxicity. Many documents (more than 14,000) have been published in the area of doxorubicin-induced cardiotoxicity (DIC) since 1970. A comprehensive bibliographic analysis of author keywords was used to describe better and understand the molecular mechanisms involved in DIC. The objective was to consider the state of the author keywords of research on the molecular mechanisms involved in DIC based on a bibliometrics study of articles published over the past fifty years. A bibliometrics analysis was conducted using VOSviewer with data collected from the Web of Science Core Collection database of over 14,000 documents (from 1970 to July 19, 2023). Using scientific publications retrieved about DIC, author keywords were assessed at the scientific field level. The current study showed that the annual number of DIC-related publications has increased over the past 50 years. The Journal of Clinical Oncology is the leading journal in this field. The top cited DIC document was published in 2004. The top keywords with high frequency were "doxorubicin," "cardiotoxicity," and "adriamycin." According to the results of this study, the most common mechanisms involved in DIC were as follows oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis. The highest occurrences of regulators-related author keywords were "AKT," "Sirt1," and "AMPK." Based on the findings, oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis were hot research mechanisms of DIC from 1970 to July 19, 2023.


Assuntos
Apoptose , Cardiotoxicidade , Humanos , Bibliometria , Doxorrubicina , Inflamação
9.
Food Sci Nutr ; 11(12): 7469-7484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107104

RESUMO

Ellagic acid (EA) is a polyphenol extracted from many plants. EA modulates inflammatory mediators via antioxidant mechanisms, such as catalase (CAT) activities, superoxide dismutase (SOD), enhancement, increase in glutathione (GSH), and lipid peroxidation (LPO) suppression. EA has anti-apoptotic properties that are thought to be mediated by regulating the expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and caspase-3. In this article, we surveyed the literature dealing with the protective effects of EA against different heavy metals, drugs, and natural toxins. The findings indicated that EA has remarkable protective properties against various toxicants. Its protective effects were mostly mediated via normalizing lipid metabolism, oxidative stress, and inflammatory mediators, for example, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß. The results of this study showed that EA has significant protective effects against a varied range of compounds, either chemical or natural. These effects are mainly mediated via intensifying the antioxidant defense system. However, other mechanisms such as inhibition of inflammatory responses and suppression of apoptosis are important.

10.
BMC Complement Med Ther ; 23(1): 377, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880739

RESUMO

BACKGROUND: Maintenance of immune system integrity is a vital requirement to protect human body against pathogens/cancers. Natural compounds have long been used due to their benefits for the immune system. One of which is bee venom that contains a peptide called melittin having antimicrobial and anticancer effects. Since a limited number of studies regarding the effects of melittin on the immune system have been carried out, we aimed to evaluate the effects of melittin on BALB/c mice immune system parameters. METHODS: Female BALB /c mice were treated intraperitoneally (i.p) with 0.75 and 1.5 mg/kg doses of melittin for 14 days (5 doses per week). The negative control group received i.p normal saline whereas the positive controls received i.p 20 mg/kg cyclophosphamide (CYP). Immunological parameters such as hematological parameters, delayed-type hypersensitivity (DTH), hemagglutination titer (HA), spleen cellularity, splenocytes proliferation, as well as spleen and bone marrow histopathological assessment were evaluated. RESULTS: Our findings showed that melittin has no gross pathological effect on the spleen and bone marrow. It was also demonstrated that melittin has no any significant effect on hematological parameters. Melittin did not cause any significant changes to proliferation response of splenocytes to PHA and LPS, spleen cellularity, DTH response, as well as the production of anti-SRBC antibodies. According to our results, melittin at 0.75 and 1.5 mg/kg doses could not induce significant changes on immune parameters and as a result, melittin was found to be safe for the mice immune system.


Assuntos
Hipersensibilidade Tardia , Meliteno , Humanos , Feminino , Camundongos , Animais , Meliteno/farmacologia , Camundongos Endogâmicos BALB C , Hipersensibilidade Tardia/patologia , Sistema Imunitário/patologia , Baço
11.
Biol Trace Elem Res ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853305

RESUMO

Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.

12.
Phytother Res ; 37(12): 5769-5786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748097

RESUMO

Although various therapeutic approaches are used to manage nonalcoholic fatty liver disease (NAFLD), the best approach to NAFLD management is unclear. NAFLD is a liver disorder associated with obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to cirrhosis and end-stage liver disease. Hepatic kinase B1 (LKB1) is an upstream kinase of 5'-adenosine monophosphate-activated protein kinase (AMPK), a crucial regulator in hepatic lipid metabolism. Activation of LKB1/AMPK inhibits fatty acid synthesis, increases mitochondrial ß-oxidation, decreases the expression of genes encoding lipogenic enzymes, improves nonalcoholic steatohepatitis, and suppresses NAFLD progression. One potential opening for new and safe chemicals that can tackle the NAFLD pathogenesis through the LKB1-AMPK pathway includes natural bioactive compounds. Accordingly, we summarized in vitro and in vivo studies regarding the effect of natural bioactive compounds such as a few members of the polyphenols, terpenoids, alkaloids, and some natural extracts on NAFLD through the LKB1/AMPK signaling pathway. This manuscript may shed light on the way to finding a new therapeutic agent for NAFLD management.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado , Metabolismo dos Lipídeos , Transdução de Sinais
13.
Iran J Basic Med Sci ; 26(8): 953-959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427324

RESUMO

Objectives: Natural coumarin called osthole is regarded as a medicinal herb with widespread applications in Traditional Chinese Medicine. It has various pharmacological properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. In some neurodegenerative diseases, osthole also shows neuroprotective properties. In this study, we explored how osthole protects human neuroblastoma SH-SY5Y cells from the cytotoxicity of 6-hydroxydopamine (6-OHDA). Materials and Methods: Using the MTT assay and DCFH-DA methods, respectively, the viability of the cells and the quantity of intracellular reactive oxygen species (ROS) were evaluated. Signal Transducers and Activators of Transcription (STAT), Janus Kinase (JAK), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and caspase-3 activation levels were examined using western blotting. Results: In SH-SY5Y cells, the results showed that a 24-hour exposure to 6-OHDA (200 µM) lowered cell viability but markedly elevated ROS, p-JAK/JAK, p-STAT/STAT, p-ERK/ERK, p-JNK/JNK ratio, and caspase-3 levels. Interestingly, osthole (100 µM) pretreatment of cells for 24 hr prevented 6-OHDA-induced cytotoxicity by undoing all effects of 6-OHDA. Conclusion: In summary, our data showed that osthole protects SH-SY5Y cells against 6-OHDA-induced cytotoxicity by inhibiting ROS generation and reducing the activity of the JAK/STAT, MAPK, and apoptotic pathways.

14.
Toxicon ; 232: 107222, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442300

RESUMO

The current study assessed the risk posed to Iranian consumers by oral exposure to a mixture of ten mycotoxins in 138 packaged and unpackaged spices collected from the Iran market. Concentrations of mycotoxins in samples were quantified by liquid chromatography, tandem mass spectrometry with triple quadrupole, and ion trap. Probabilistic health risks of oral exposure to these mycotoxins for Iranians were assessed under percent tolerable daily intake (TDI) and cancer risk scenarios. Mean concentrations of mycotoxins in both packaged and unpackaged spice samples showed statistically significant variation among different spice samples. Based on a Monte Carlo simulation model, at the 50th, 80th, and 95th centiles, oral consumption of the analyzed samples poses no carcinogenic risk for exposure to aflatoxin. Moreover, in both packaged and unpackaged samples, while the percent TDIs for ochratoxin A, deoxynivalenol, zearalenone, patulin, fumonisin B1, and fumonisin B2 were below 1.0 at the 50th, 80th, and 95th centiles, the value was above 1.0 for aflatoxin B1, aflatoxin B2, aflatoxin G1, and aflatoxin G2 at each of these centiles.


Assuntos
Micotoxinas , Patulina , Zearalenona , Humanos , Micotoxinas/análise , Irã (Geográfico) , Especiarias/análise , Zearalenona/análise , Medição de Risco , Contaminação de Alimentos/análise
15.
Cell Cycle ; 22(13): 1654-1674, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365840

RESUMO

MasR is a critical element in the RAS accessory pathway that protects the heart against myocardial infarction, ischemia-reperfusion injury, and pathological remodeling by counteracting the effects of AT1R. This receptor is mainly stimulated by Ang 1-7, which is a bioactive metabolite of the angiotensin produced by ACE2. MasR activation attenuates ischemia-related myocardial damage by facilitating vasorelaxation, improving cell metabolism, reducing inflammation and oxidative stress, inhibiting thrombosis, and stabilizing atherosclerotic plaque. It also prevents pathological cardiac remodeling by suppressing hypertrophy- and fibrosis-inducing signals. In addition, the potential of MasR in lowering blood pressure, improving blood glucose and lipid profiles, and weight loss has made it effective in modulating risk factors for coronary artery disease including hypertension, diabetes, dyslipidemia, and obesity. Considering these properties, the administration of MasR agonists offers a promising approach to the prevention and treatment of ischemic heart disease.Abbreviations: Acetylcholine (Ach); AMP-activated protein kinase (AMPK); Angiotensin (Ang); Angiotensin receptor (ATR); Angiotensin receptor blocker (ARB); Angiotensin-converting enzyme (ACE); Angiotensin-converting enzyme inhibitor (ACEI); Anti-PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16); bradykinin (BK); Calcineurin (CaN); cAMP-response element binding protein (CREB); Catalase (CAT); C-C Motif Chemokine Ligand 2 (CCL2); Chloride channel 3 (CIC3); c-Jun N-terminal kinases (JNK); Cluster of differentiation 36 (CD36); Cocaine- and amphetamine-regulated transcript (CART); Connective tissue growth factor (CTGF); Coronary artery disease (CAD); Creatine phosphokinase (CPK); C-X-C motif chemokine ligand 10 (CXCL10); Cystic fibrosis transmembrane conductance regulator (CFTR); Endothelial nitric oxide synthase (eNOS); Extracellular signal-regulated kinase 1/2 (ERK 1/2); Fatty acid transport protein (FATP); Fibroblast growth factor 21 (FGF21); Forkhead box protein O1 (FoxO1); Glucokinase (Gk); Glucose transporter (GLUT); Glycogen synthase kinase 3ß (GSK3ß); High density lipoprotein (HDL); High sensitive C-reactive protein (hs-CRP); Inositol trisphosphate (IP3); Interleukin (IL); Ischemic heart disease (IHD); Janus kinase (JAK); Kruppel-like factor 4 (KLF4); Lactate dehydrogenase (LDH); Left ventricular end-diastolic pressure (LVEDP); Left ventricular end-systolic pressure (LVESP); Lipoprotein lipase (LPL); L-NG-Nitro arginine methyl ester (L-NAME); Low density lipoprotein (LDL); Mammalian target of rapamycin (mTOR); Mas-related G protein-coupled receptors (Mrgpr); Matrix metalloproteinase (MMP); MAPK phosphatase-1 (MKP-1); Mitogen-activated protein kinase (MAPK); Monocyte chemoattractant protein-1 (MCP-1); NADPH oxidase (NOX); Neuropeptide FF (NPFF); Neutral endopeptidase (NEP); Nitric oxide (NO); Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB); Nuclear-factor of activated T-cells (NFAT); Pancreatic and duodenal homeobox 1 (Pdx1); Peroxisome proliferator- activated receptor γ (PPARγ); Phosphoinositide 3-kinases (PI3k); Phospholipase C (PLC); Prepro-orexin (PPO); Prolyl-endopeptidase (PEP); Prostacyclin (PGI2); Protein kinase B (Akt); Reactive oxygen species (ROS); Renin-angiotensin system (RAS); Rho-associated protein kinase (ROCK); Serum amyloid A (SAA); Signal transducer and activator of transcription (STAT); Sirtuin 1 (Sirt1); Slit guidance ligand 3 (Slit3); Smooth muscle 22α (SM22α); Sterol regulatory element-binding protein 1 (SREBP-1c); Stromal-derived factor-1a (SDF); Superoxide dismutase (SOD); Thiobarbituric acid reactive substances (TBARS); Tissue factor (TF); Toll-like receptor 4 (TLR4); Transforming growth factor ß1 (TGF-ß1); Tumor necrosis factor α (TNF-α); Uncoupling protein 1 (UCP1); Ventrolateral medulla (VLM).


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Ligantes , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Isquemia , Angiotensinas , Quimiocinas
16.
Eur J Pharmacol ; 949: 175726, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062503

RESUMO

Cholesterol is a key component of the cell membrane that impacts the permeability, fluidity, and functions of membrane-bound proteins. It also participates in synaptogenesis, synaptic function, axonal growth, dendrite outgrowth, and microtubule stability. Cholesterol biosynthesis and metabolism are in balance in the brain. Its metabolism in the brain is mediated mainly by CYP46A1 or cholesterol 24-hydroxylase. It is responsible for eliminating about 80% of the cholesterol excess from the human brain. CYP46A1 converts cholesterol to 24S-hydroxycholesterol (24HC) that readily crosses the blood-brain barrier and reaches the liver for the final elimination process. Studies show that cholesterol and 24HC levels change during neurological diseases and conditions. So, it was hypothesized that inhibition or activation of CYP46A1 would be an effective therapeutic strategy. Accordingly, preclinical studies, using genetic and pharmacological interventions, assessed the role of CYP46A1 in main neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. In addition, its role in seizures and brain injury was evaluated. The recent development of soticlestat, as a selective and potent CYP46A1 inhibitor, with significant anti-seizure effects in preclinical and clinical studies, suggests the importance of this target for future drug developments. Previous studies have shown that both activation and inhibition of CYP46A1 are of therapeutic value. This article, using recent studies, highlights the role of CYP46A1 in various brain diseases and insults.


Assuntos
Doença de Alzheimer , Colesterol , Humanos , Colesterol 24-Hidroxilase/metabolismo , Colesterol/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo
17.
Toxicol Ind Health ; 39(5): 248-257, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37022282

RESUMO

Benzo(a)pyrene is a ubiquitous environmental contaminant, which could induce renal injury. It is reported that melatonin has a protective effect against multiple organ injuries by regulating oxidative stress, apoptosis, and autophagy. The aim of this study was to estimate the melatonin effects on benzo(a)pyrene renal toxicity in mice and the possible molecular mechanisms involved in this model. Thirty male mice were allocated to five groups and treated with benzo(a)pyrene (75 mg/kg, oral gavage) and/or melatonin (10 and 20 mg/kg, intraperitoneally). The oxidative stress factors were evaluated in renal tissue. The levels of apoptotic (the Bax/Bcl-2 ratio and caspase-3) and autophagic (the LC3 II/I, Beclin-1, and Sirt1) proteins were examined using Western blot. Following the administration of benzo(a)pyrene, malondialdehyde, caspase-3 and the Bax/Bcl-2 ratio increased in renal tissue, while Sirt1, Beclin-1, and the LC3 II/I ratio diminished. Interestingly, the co-administration of 20 mg/kg melatonin along with benzo(a)pyrene reduced the oxidative stress markers, apoptotic and autophagic proteins. Collectively, melatonin exhibited a protective effect against benzo(a)pyrene-induced renal injury through the suppression of oxidative stress and apoptosis and the inhibition of Sirt1/autophagy pathway.


Assuntos
Melatonina , Camundongos , Masculino , Animais , Melatonina/farmacologia , Benzo(a)pireno , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Caspase 3 , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
ACS Appl Mater Interfaces ; 15(8): 10570-10584, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795101

RESUMO

The use of inexpensive and widely available CO2 lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI). Herein, we demonstrate that incorporating microparticles of inexpensive, non-toxic, and widely abundant sodium salts such as NaCl and Na2SO4 into poly(furfuryl alcohol) (PFA) resins enables the formation of high-performance LIG. The embedded particles aid in carbonization and act as a template for pore formation. While increasing both the carbon yield and surface area of the electrodes, the salt also dopes the LIG formed with S or Cl. The combination of these effects results in a two- to four-order-of-magnitude increase in device areal capacitance, from 8 µF/cm2 for PFA/no salt at 5 mV/s to up to 80 mF/cm2 for some PFA/20% Na2SO4 samples at 0.05 mA/cm2, significantly higher than that of PI-based devices and most other LIG precursors.

19.
Food Sci Nutr ; 11(1): 39-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655104

RESUMO

Rutin is a flavonoid present in many plant species. Because of its antioxidant, anti-inflammatory, and antiapoptotic properties, rutin is of interest for its potential protective effects against toxic agents. The hepatoprotective, renoprotective, and cardioprotective effects of rutin are reviewed. The antioxidant effects of rutin are elicited by enhancing antioxidant enzymes such as GST, GGT, CAT, GPx, SOD, and GR, activating the Nrf2/HO-1 pathway, elevating GSH content, and the reduction in MDA. The anti-inflammatory effects of rutin are mediated by the inhibition of IL-1ß, IL-6, TGF-ß1, COX-2, iNOS, TLR4, and XO. Rutin exerted its antiapoptotic effects by inhibition of free radicals, caspase-3/-7/-9, hsp70, HMGB1, and p53, and the elevation of the antiapoptotic protein Bcl-2. Rutin has potential therapeutic effectiveness against several toxicants, and its beneficial effects are more than likely mediated by its antioxidant, anti-inflammatory, and/or antiapoptotic property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...